El modelo Biológico
Se estima que el cerebro humano contiene más de cien mil millones de neuronas estudios sobre la anatomía del cerebro humano concluyen que hay más de 1000 sinápsis a la entrada y a la salida de cada neurona. Es importante notar que aunque el tiempo de conmutación de la neurona ( unos pocos milisegundos) es casi un millón de veces menor que en los actuales elementos de las computadoras, ellas tienen una conectividad miles de veces superior que las actuales supercomputadoras.
Las neuronas y las conexiones entre ellas (sinápsis) constituyen la clave para el procesado de la información.
Algunos elementos ha destacar de su estructura histológica son:
Las dendritas, que son la vía de entrada de las señales que se combinan en el cuerpo de la neurona. De alguna manera la neurona elabora una señal de salida a partir de ellas.
El axón, que es el camino de salida de la señal generada por la neurona.
Las sinapsis, que son las unidades funcionales y estructurales elementales que median entre las interacciones de las neuronas. En las terminaciones de las sinapsis se encuentran unas vesículas que contienen unas sustancias químicas llamadas neurotransmisores, que ayudan a la propagación de las señales electroquímicas de una neurona a otra.
Lo que básicamente ocurre en una neurona biológica es lo siguiente: la neurona es estimulada o excitada a través de sus entradas (inputs) y cuando se alcanza un cierto umbral, la neurona se dispara o activa, pasando una señal hacia el axón.
Posteriores investigaciones condujeron al descubrimiento de que estos procesos son el resultado de eventos electroquímicos. Como ya se sabe, el pensamiento tiene lugar en el cerebro, que consta de billones de neuronas interconectadas. Así, el secreto de la "inteligencia" -sin importar como se defina- se sitúa dentro de estas neuronas interconectadas y de su interacción.
La forma que dos neuronas interactúan no está totalmente conocida, dependiendo además de cada neurona. En general, una neurona envía su salida a otras por su axón. El axón lleva la información por medio de diferencias de potencial, u ondas de corriente, que depende del potencial de la neurona.
Este proceso es a menudo modelado como una regla de propagación representada por la función de red u(.). La neurona recoge las señales por su sinápsis sumando todas las influencias excitadoras e inhibidoras. Si las influencias excitadoras positivas dominan, entonces la neurona da una señal positiva y manda este mensaje a otras neuronas por sus sinápsis de salida. En este sentido la neurona puede ser modelada como una simple función escalón f(.). Como se muestra en la próxima figura, la neurona se activa si la fuerza combinada de la señal de entrada es superior a un cierto nivel, en el caso general el valor de activación de la neurona viene dado por una función de activación f(.).
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario