Para entender el potencial de la computación neuronal, sería necesario hacer una breve distinción entre sistemas de computación neuronales y digitales: los sistemas neurológicos no aplican principios de circuitos lógicos o digitales.
Un sistema de computación digital debe ser síncrono o asíncrono. Si fuera asíncrono, la duración de los impulsos neuronales debería ser variable para mantener uno de los valores binarios por periodos de tiempo indefinido, lo cual no es el caso. Si el principio fuera síncrono, se necesitaría un reloj global o maestro con el cual los pulsos estén sincronizados. Éste tampoco es el caso. Las neuronas no pueden ser circuitos de umbral lógico, porque hay miles de entradas variables en la mayoría de las neuronas y el umbral es variable con el tiempo, siendo afectado por la estimulación, atenuación, etc. La precisión y estabilidad de tales circuitos no es suficiente para definir ninguna función booleana. Los procesos colectivos que son importantes en computación neuronal no pueden implementarse por computación digital. Por todo ello, el cerebro debe ser un computador analógico.
Ni las neuronas ni las sinapsis son elementos de memoria biestable. Todos los hechos fisiológicos hablan a favor de las acciones de las neuronas como integradores analógicos, y la eficiencia de la sinapsis cambia de forma gradual, lo cual no es característico de sistemas biestables.
Los circuitos del cerebro no implementan computación recursiva y por lo tanto no son algorítmicos. Debido a los problemas de estabilidad, los circuitos neuronales no son suficientemente estables para definiciones recursivas de funciones como en computación digital. Un algoritmo, por definición, define una función recursiva.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario