Las redes neuronales fueron los primeros métodos computacionales con la capacidad inherente de tolerancia a fallos. Comparados con los sistemas computacionales tradicionales, los cuales pierden su funcionalidad cuando sufren un pequeño error de memoria, en las redes neuronales, si se produce un fallo en un número no muy grande de neuronas y aunque el comportamiento del sistema se ve influenciado, no sufre una caída repentina.
Hay dos aspectos distintos respecto a la tolerancia a fallos:
a) Las redes pueden aprender a reconocer patrones con ruido, distorsionados o incompletos. Esta es una tolerancia a fallos respecto a los datos.
b) Las redes pueden seguir realizando su función (con cierta degradación) aunque se destruya parte de la red.
La razón por la que las redes neuronales son tolerantes a los fallos es que tienen su información distribuida en las conexiones entre neuronas, existiendo cierto grado de redundancia en este tipo de almacenamiento. La mayoría de los ordenadores algorítmicos y sistemas de recuperación de datos almacenan cada pieza de información en un espacio único, localizado y direccionable. En cambio, las redes neuronales almacenan información no localizada. Por lo tanto, la mayoría de las interconexiones entre los nodos de la red tendrán sus valores en función de los estímulos recibidos, y se generará un patrón de salida que represente la información almacenada.
Operación en tiempo real
Una de las mayores prioridades, casi en la totalidad de las áreas de aplicación, es la necesidad de realizar procesos con datos de forma muy rápida. Las redes neuronales se adaptan bien a esto debido a su implementación paralela. Para que la mayoría de las redes puedan operar en un entorno de tiempo real, la necesidad de cambio en los pesos de las conexiones o entrenamiento es mínimo.
Fácil inserción dentro de la tecnología existente
Una red individual puede ser entrenada para desarrollar una única y bien definida tarea (tareas complejas, que hagan múltiples selecciones de patrones, requerirán sistemas de redes interconectadas). Con las herramientas computacionales existentes (no del tipo PC), una red puede ser rápidamente entrenada, comprobada, verificada y trasladada a una implementación hardware de bajo coste. Por lo tanto, no se presentan dificultades para la inserción de redes neuronales en aplicaciones específicas, por ejemplo de control, dentro de los sistemas existentes. De esta manera, las redes neuronales se pueden utilizar para mejorar sistemas en forma incremental y cada paso puede ser evaluado antes de acometer un desarrollo más amplio.
Hay dos aspectos distintos respecto a la tolerancia a fallos:
a) Las redes pueden aprender a reconocer patrones con ruido, distorsionados o incompletos. Esta es una tolerancia a fallos respecto a los datos.
b) Las redes pueden seguir realizando su función (con cierta degradación) aunque se destruya parte de la red.
La razón por la que las redes neuronales son tolerantes a los fallos es que tienen su información distribuida en las conexiones entre neuronas, existiendo cierto grado de redundancia en este tipo de almacenamiento. La mayoría de los ordenadores algorítmicos y sistemas de recuperación de datos almacenan cada pieza de información en un espacio único, localizado y direccionable. En cambio, las redes neuronales almacenan información no localizada. Por lo tanto, la mayoría de las interconexiones entre los nodos de la red tendrán sus valores en función de los estímulos recibidos, y se generará un patrón de salida que represente la información almacenada.
Operación en tiempo real
Una de las mayores prioridades, casi en la totalidad de las áreas de aplicación, es la necesidad de realizar procesos con datos de forma muy rápida. Las redes neuronales se adaptan bien a esto debido a su implementación paralela. Para que la mayoría de las redes puedan operar en un entorno de tiempo real, la necesidad de cambio en los pesos de las conexiones o entrenamiento es mínimo.
Fácil inserción dentro de la tecnología existente
Una red individual puede ser entrenada para desarrollar una única y bien definida tarea (tareas complejas, que hagan múltiples selecciones de patrones, requerirán sistemas de redes interconectadas). Con las herramientas computacionales existentes (no del tipo PC), una red puede ser rápidamente entrenada, comprobada, verificada y trasladada a una implementación hardware de bajo coste. Por lo tanto, no se presentan dificultades para la inserción de redes neuronales en aplicaciones específicas, por ejemplo de control, dentro de los sistemas existentes. De esta manera, las redes neuronales se pueden utilizar para mejorar sistemas en forma incremental y cada paso puede ser evaluado antes de acometer un desarrollo más amplio.
No hay comentarios:
Publicar un comentario